A two-stage hybrid classification technique for network intrusion detection system
نویسندگان
چکیده
Conventional Network intrusion detection system (NIDS) mostly uses individual classification techniques, such system fails to provide the best possible attack detection rate. In this paper, we propose a new two-stage hybrid classification method using Support Vector Machine (SVM) as anomaly detection in the first stage, and Artificial Neural Network (ANN) as misuse detection in the second. The key idea is to combine the advantages of each technique to ameliorate classification accuracy along with a low probability of false positive. The first stage (Anomaly) detects abnormal activities that could be an intrusion. The second stage (Misuse) further analyze if there is a known attack and classifies the type of attack into four classes namely, Denial of Service (DoS), Remote to Local (R2L), User to Root (U2R) and Probe. Simulation results demonstrate that the proposed algorithm outperforms conventional model including individual classification of SVM and ANN algorithm. The empirical results demonstrate that the proposed system has a reliable degree of detecting anomaly activity over the network data. Simulation results of both stages are based on NSL-KDD datasets which is an enhanced version of KDD99 intrusion dataset.
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملEffective Intrusion Detection System using Data Mining Technique
Network Security has become the key foundation with the tremendous increase in usage of network-based services and information sharing on networks. Intrusion poses a serious risk to the network security and compromise integrity, confidentiality & availability of the computer and network resources. Human classification of network audit data is expensive, time consuming and a tedious job. Intrusi...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2016